一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2024正高学典答案数学 正高试题的文章,本文对文章2024正高学典答案数学 正高试题好好的分析和解答,希望你能喜欢,只有你喜欢的内容存在,只有你来光临,我们才能继续前行。
答案在最后!!!!!!!
[新手] 初一数学同步习题
一、填空:
(1)若x<5,则|x-5|=______,若|x+2|=1,则x=______
(2)如果|a+2|+(b+1)2=0,那么(1/a)+b=_______
(3)保留三个有效数字的近似值数是_______
(5)在代数式a2、a2+1、(a+1)2、a2+|a|中,一定表示正数的是______
(6)(-32)的底数是____,幂是____,结果是____
(9)一个三位数,十位数字是a,个位数字比十位数字的2倍小3,百位数字是十位数字的一半,用代数表示这个三 位数是_____
(10)若多项式(2mx2-x2+3x+1)-(5x2-4y2+3x)的值与x无关,则2m3-[3m2+(4m-5)+m]的值是____
二、选择题:
(1)已知x<0,且|x|=2,那么2x+|x|=( )
A、2 B、-2 C、+2 D、0
A、x>0,y>0 B、x<0y0,y<0 D、x0
(3)如果一个有理数的平方根等于-x,那么x是( )
A、负数 B、正数 C、非负数 D、不是正数
(4)若m,n两数在数轴上表示的数如图,则按从小到大的顺序排列m,n,-m,-n,是( )
A、n<m<-n<-m B、m<n<-m<-n C、n<-m<m<-n D、n<-n<m<-m
(5)如果|a-3|=3-a,则a的取值范围是( )
A、a≥3 B、a≤3 C、a>3 D、a<3
三、计算:
四、求值:
(4)若代数式2y2+3y+7的值为8,求代数式4y2+6y+9的值
(5)试证明当x=-2时,代数式x3+1 的值与代数式(x+1)(x2-x+1) 的值相等
五、
(1)化简求值:
-3[y-(3x2-3xy)]-[y+2(4x2-4xy)],其中x=2, y=1/2
(2)当x=-2时ax3+bx-7的值是5,求当x =2 时,ax3+bx-17的值
(3)已知多项式2(x2+abx+3b)与2bx2-2abx+3a的和中,只有常数项-3,求a与b的关系
六、选作题:
(2)用简便方法指出下列各数的末位数字是几:
①2019 ②2135 ③2216 ④2315 ⑤2422 ⑥2527 ⑦2628
⑧2716 ⑨2818 ⑩2924
答案:
一、⑴5-x,-1或-3
⑶4.08×106
⑸a2+1 ⑹3 , 32, -9 ⑺五 四 1/3 ⑻3 , 5
⑽17
二、⑴B ⑵B ⑶D ⑷C ⑸B
三、⑴2 ⑵-5 ⑶-43 ⑷0
四、⑴0.1 ⑵b=3cm ⑶3 ⑷11 ⑸略
五、⑴x2-xy-4y2值为1 ⑵值为-29 ⑶a与b互为相反数(a=1,b=-1)
六、⑴0.99
⑵①0 ②1 ③6 ④7 ⑤6 ⑥5 ⑦6 ⑧1 ⑨4 ⑩1
一元一次方程自测题(满分100分,时间90分)
一. 选择题:(每小题4分,共32分)
(1)下列各式中,不是等式的式子是( )
(A)3+2=6; (B) ; (C) ; (D)
(2)下列说法中,正确的是( )
(A)方程是等式; (B)等式是方程;
(C)含有字母的等式是方程; (D)不含字母的方程是等式。
(3)当 时,代数式 的值是4,那么a的值是( )
(A)-4; (B)-3; (C)3; (D)2。
(4)某商场上月的营业额是 万元,本月比上月增长15%,那么本月的营业额是( )
(A) 万元; (B) 万元;
(C) 万元; (D) 万元。
(5)如果 是方程 的解,那么 的值( )
(A) ; (B)5; (C) 1; (D)
(6)方程的解是( )
(A)x= ; (B);x= (C)x= ; (D)x=6
(7)学生 人,以每10人为一组,其中有两组各少1人,则学生共有( )
(A) 组; (B) 组; (C) 组; (D) 组
(8)下列各式中与 ( )的值相等的是( )
(A) ; (B) ; (C) ; (D)
二.填空题:(每空2分,共20分)
1) 对于方程4x=-2x-6,移项,得 ,合并同类项,得 ,系数化成1,得 。
2) 如果方程 ______。
3)当K= 时,代数式2K+(5+3K)的值为0。
4)如果2a2bm+1与 a2b2m-1是同类项,那么m= .
5)将下列分数化成分母是整数的形式:
; ; 。
6)如果甲数与数的2倍的和为20,乙数用X表示,那么甲数应表示成 。
三.解方程题:(每小题6分,共30分)
(1)7X=5+4X (检验) (2)7X-(X-5)=4X-1
(3) (4)0.2X-0.1=2X
(5)
四.列方程解应用题:(每小题3分,共18分)
(1)有一个水池,如果单开甲管2小时注满水池,单开乙管5小时注满水池。甲、乙两管同时注水,问需要多少时间才能把水池注满?
(2)有一个水池,如果单开甲管2小时注满水池,单开乙管5小时注满水,单开丙管3小时可以把一满池水放完.如果三管同时开放,多少小时才能把一空池注满水?
(3)一个两位数,十位上的数比个位上的数小2.如果把十位上的数与个位上的数对调,那么得到的新数比原数的2倍小6.求原来的两位数.
初一数学第五章单元测试A
一、填空(每格2分) 班级______姓名______学号____
1、已知直线a与b相交,且∠1=70°,则∠2=__°,
∠3=__°,∠4=___°.
2、如图,∠A=50°,∠B=20°,∠C=30°,
则∠1=____°. (第1题)
3、已知,一个三角形的一个外角为70°,此三角形
为___三角形.
4、如果三角形中有两个角相等,其中一个角的外角为100°,
则这个三角形各内角为____________. (第2题)
5、直角三角形两锐角平分线相交所成的钝角为_____.
6、已知三角形的二边为2cm,5cm,周长为偶数,则第三边
为____cm.
7、如图,ΔABC中,AE为CB边上的高,AF为ΔABC (第7题)
的角平分线,∠B=80°,∠C=30°,则∠EAF=____°.
8、ΔABC中,∠ACB=RtΔ,CD⊥AB于D,则∠1=___,
∠2=____,图中互余的角有___对.若AC=2cm,
CB=3cm,则ΔABC的面积=_____cm2. (第8题)
9、如图,AB//CD,则∠1+∠2+∠3=____.
10、长、宽、高分别是4,5,6的长方体内一点P,到各个面
的距离和是___.
二、选择题(每题3分) (第9题)
1、下列长度的三条线段能组成三角形的是―――――――――――――( )
A.3cm,7cm,10cm B.5cm,4cm,8cm
C.5cm,9cm,3cm D.3cm,6cm,10cm
2、ΔABC中,若与∠C相邻的一个外角为110°,∠A=40°,则∠B为―――――( )
A.30° B.50° C.60° D.70°
3、锐角三角形中,最大角的取值范围是―――――――――――――( )
A.0°<α<90° B.60°<α<180°
C.60°<α<90° D.60°≤α<90°
4、若三角形的三边a、b、c、均为正整数,且a≥b≥c,
a=2,则符合这些条件的三角形有( )
A.1个 B.2个 C.3个 D.4个
5、已知,如图,∠2=62°,∠3=118°,则∠1与∠4 (第5题)
的大小关系是――――――――――――( )
A.∠1>∠4 B.∠1=∠4 C.∠1<∠4 D.不能确定
6、在长方体中,既与一个面平行,又与另一个面垂直的棱条数是( )
A.1 B.4 C.8 D12.
7、正方形水平放置直观图中画法正确的是――――――――――( )
A. B. C. D.
8、如图,已知AD是ΔABC的中线,BE是ΔABD的中线,
且ΔABC的面积为S,则ΔABE的面积为( )
A. S B. S C. S D. S (第8题)
9、下列说法正确的是――――――――――( )
A.邻补角的平分线互相垂直
B.垂直于同一直线的两条直线互相平行
C.从直线外一点到这条直线的垂线段叫点到直线的距离
D.三角形的角平分线是一条射线.
三、解答题
1、如图,AB//CD,∠A=100°,∠C=75°,∠1∶∠2=5∶7,
求∠B的度数.(10分)
(每格2分)
∵ DA⊥AC( )
∴ DAC=90( )
∵ EB//AD( )
∴ ∠EBC=∠DAC=90°( )
∵ ∠D=∠E( )
∴ ∠C=____(等角的余角相等)
∴ BD//CE( )
3、(1)画一个长3cm,宽4cm,高的长方体的直观图.(7分)
(2)作ΔABC的三边上的高.(7分)
4、如图,长方体AB=3cm,BC=2cm,B1B=1cm,按规定尺寸画出沿长方体表面从点A到点C1的最短路线的示意图.
示意图:
初一数学第五章单元测试B
一、填空(每格2分) 班级______姓名______学号____
1、直角三角形两锐角平分线相交所成的锐角为_____.
2、长、宽、高分别是4,5,6的长方体内一点P,到各个面
的距离和是___.
3、已知,一个三角形的一个外角为70°,此三角形
为___三角形.
4、已知直线a与b相交,且∠1=70°,则∠2=__°,
∠3=__°,∠4=___°.
5、如图,∠A=50°,∠B=20°,∠C=30°,
则∠1=____°. (第5题)
6、如果三角形中有两个角相等,其中一个角的外角为100°,
则这个三角形各内角为____________.
7、已知三角形的二边为2cm,5cm,周长为偶数,则第三边
为____cm.
8、如图,ΔABC中,AE为CB边上的高,AF为ΔABC (第8题)
的角平分线,∠B=80°,∠C=30°,则∠EAF=____°.
9、ΔABC中,∠ACB=RtΔ,CD⊥AB于D,则∠1=___,
∠2=____,图中互余的角有___对.若AC=2cm, (第9题)
CB=3cm,则ΔABC的面积=_____cm2.
10、如图,AB//CD,则∠1+∠2+∠3=____.
二、选择题(每题3分) (第10题)
1、下列长度的三条线段能组成三角形的是―――――――――――――( )
A.3cm,7cm,10cm B.5cm,9cm,3cm
C.5cm,4cm,8cm D.3cm,6cm,10cm
2、ΔABC中,若与∠C相邻的一个外角为110°,∠A=40°,则∠B为―――――( )
A.70° B.50° C.60° D. 30°
3、锐角三角形中,最大角的取值范围是―――――――――――――( )
A.60°<α<90° B.60°<α<180°
C.0°<α<90° D.60°≤α<90°
4、若三角形的三边a、b、c、均为正整数,且a≥b≥c,
a=2,则符合这些条件的三角形有( )
A.4个 B.3个 C.2个 D.1个
5、已知,如图,∠2=62°,∠3=118°,则∠1与∠4 (第5题)
的大小关系是――――――――――――( )
A .∠1<∠4 B.∠1=∠4 C.∠1>∠4 D.不能确定
6、在长方体中,既与一个面平行,又与另一个面垂直的棱条数是( )
A.4 B.12 C.8 D.1
7、正方形水平放置直观图中画法正确的是――――――――――( )
A. B. C. D.
8、如图,已知AD是ΔABC的中线,BE是ΔABD的中线,
且ΔABC的面积为S,则ΔABE的面积为( )
A. S B. S C. S D. S (第8题)
9、下列说法正确的是――――――――――( )
A.三角形的角平分线是一条射线.
B.垂直于同一直线的两条直线互相平行
C.从直线外一点到这条直线的垂线段叫点到直线的距离
D.邻补角的平分线互相垂直
三、解答题
1、如图,AB//CD,∠A=100°,∠C=75°,∠1∶∠2=5∶7,
求∠B的度数.(10分)
(每格2分)
∵ DA⊥AC( )
∴ ∠DAC=90°( )
∵ EB//AD( )
∴ ∠EBC=∠DAC=90°( )
∵ ∠D=∠E( )
∴ ∠C=____(等角的余角相等)
∴ BD//CE( )
3、(1)画一个长3cm,宽4cm,高3cm的长方体的直观图.(7分)
(2)作ΔABC的三边上的高.(7分)
4、如图,长方体AB=3cm,BC=2cm,B1B=1cm,按规定尺寸画出沿长方体表面从点A到点C1的最短路线的示意图.
示意图:
第九章 章末综合检测题
(满分100分,时间90分钟)
一. 填空题(共22分,每空1分)
1. 在?ABC中,AB=AC,?B=74?,则?A=__________.
2. 在?ABC中,BC=AC,?C=90?,则?A=_________,?B=___________.
3. 在?ABC中,AB=AC,?A=60?,则?B=_________,?ABC是_______三角形。
4. 在?ABC中,如图1,BO平分?ABC,CO平分?ACB,BO=CO,如果?BOC=140?,那么?A=________________ .
A
A
O D
B C B C
图1 图2
5. 在?ABC中,如图2,AB=AC,?A=36?,BD平分?ABC,则图中共有______个等腰三角形;他们分别是__________________________________________.
6. 如果两个图形是轴对称图形,那么沿某条直线对折,对折的两部分图形是______________的,这条直线为______________,这两个图形中的对应点叫做______________.
7. 两对称图形的对应线段___________;两对称图形的对应角____________.
8. 如果图形关于某一条直线对称,那么连结对称点的线段被对称轴___________.
9. 有一个内角是130?的等腰三角形的另外两个角分别是_____________________.
10. 等腰三角形一腰上的高与底边的夹角是37?,则顶角为________________.
11. 等腰三角形两腰上的高交成的锐角为80?,则这个三角形个内角分别为______________________________.
12. 等边三角形两条中线相交成的锐角为______________;对称轴共有______条.
13. 在?ABC中,AB=AC,?A+?B=2?C,则?ABC为_________三角形.
14. 等腰三角形的三个内角与顶角的一个外角之和等于260?,则这个等腰三角形的顶角等于________________;底角等于__________________.
二. 判断题(共10分,每题2分)
15.轴对称图形的对称轴是唯一的。( )
16.梯形的对称轴是上底或下底的垂直平分线。( )
17.正方形的对角线是正方形的对称轴。( )
18.在?ABC与?A?B?C?中,若?A=?A?,则它们所对的边必有BC=B?C?。( )
19.等腰直角三角形是轴对称图形。( )
三. 选择题(共20分,每题4分)
20.下面的图形中,不是轴对称图形的是( )
A. 有两个角相等的三角形;
B. 有一个内角是40?,另一个内角是100?的三角形;
C. 三个内角的度数比是2?3:4的三角形;
D. 三个内角的度数比是1:1:2的三角形。
21.如图3,是轴对称图形的是( )
A. B.
B. D.
图3
22.如图4,左右两边构成轴对称图形的是( )
A. B.
B. D
图4
23.等腰三角形的一个外角是130?,则它的底角等于( )
A.50? B.65? C.100? D.50?或65?
24.已知一个三角形的任何一个角的角平分线都垂直于这个角所对的边,这个三角形是( ) A.直角三角形; B.锐角三角形;
C.等腰直角三角形; D.等边三角形。
四. 作图题(共30分)
25.作出下列图形的所有的对称轴,并标明每个图形对称轴的条数(每题2分)
(1) (2) (3)
(4) (5) (6)
26.分别以直线m为对称轴画出下列图形的对称图形,并保留作图痕迹。(每题4分)
(1) m (2) m
B A B
A C E
C
D D
27.利用一条线段、一个圆、一个正三角形,设计一个轴对称图形。(4分)
28.如图5,A、B两村在一条小河的的同一侧,要在河边建一自来水厂向两村供水。
(1) 若要使自来水厂到两村的距离相等,厂址应选在哪个位置?
(2) 若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹。(6分)
.B
A.
图5
五. 解答题(共18分,每题6分)
29.如图6,在?ABC中,AB=AC,?A=92?,延长AB到D,使BD=BC,连结DC。
求?D的度数,?ACD的度数。
A
B C
图6
D
30.如图7,在?ABC中,?ACB为直角,BD=BC,AE=AC,求?DCE的度数。
A
D
E
C B
图7
31.如图8,四边形ABCD是长方形弹子球台面,有黑白两球分别在E、F两点位置上,试问,怎样撞击黑球E,才能使黑球E才能使它先碰撞台球台边AB反弹后再击中白球F?请画出路线图,并对作法加以解释说明。(6分)
A D
B C
图8
第九章 章末综合检测题参考答案
一. 填空题
1. 32? 2. 45?;45?
3. 60? ;等边 4. 100?
5. 3 ;?ABC, ?BDC, ?DAB 6. 完全重合的;对称轴;对称点
7. 相等;相等 8. 垂直平分
9. 25?;25? 10. 74?
11. 80?;50?;50? 12. 60? ;3
13. 等边 14. 100? ; 40?
二. 判断题
15. × 16.× 17.√ 18.× 19.√
三. 选择题
20.C 21.C 22.C 23.D 24.D
四. 作图题(画图略)
25.(1)2条; (2)1条; (3)1条; (4)2条; (5)4条; (6)3条。
26.(略) 27.(略)
(1)连结AB,作AB的垂直平分线交AB于点P,则P点为所求。
(2)作A点关于直线m的对称点A?,连结A?B交直线m于点Q,则Q点为所求。
五.解答题
29. ?ABC=?ACB=(180?-92?)/2=44?,?D=?BCD,?D=22?;?ACD=44?+22?=66?
30. ?ACE=?AEC设为x?,?BCD=?BDC设为y?,要求的?DCE设为z?。
由?ACB=90?得:x+y-z=90;
由?DCE内角和为180?得:x+y+z=180。
两方程相减z可求。?DCE=45?
作E点(或F点)关于AB的对称点E?(或F?);连结E?F(或EF?);E?F(或EF?)与AB的交点P就是撞击点,对准这点打,必将击中白球。
高一数学期末同步测试题
ycy
说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:(每小题5分,共60分,请将所选答案填在括号内)
1.函数 的一条对称轴方程是 ( )
A. B. C. D.
2.角θ满足条件sin2θ<0,cosθ-sinθ<0,则θ在 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ( )
A. B.- C. ± D.-
4.已知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC
是 ( )
A.任意三角形 B.直角三角形 C.等腰三角形 D.等边三角形
5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.化简 的结果是 ( )
A. B. C. D.
7.已知向量 ,向量 则 的最大值,最小值分别是( )
A. B. C.16,0 D.4,0
8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不 变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ( )
A.y=cos2x B.y=-sin2x
C.y=sin(2x- ) D.y=sin(2x+ )
9. ,则y的最小值为 ( )
A.– 2 B.– 1 C.1 D.
10.在下列区间中,是函数 的一个递增区间的是 ( )
A. B. C. D.
11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ( )
A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)
12. 的最小正周期是 ( )
A. B. C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题:(每小题4分,共16分,请将答案填在横线上)
13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.
14. ,则 的夹角为_ ___.
15.y=(1+sinx)(1+cosx)的最大值为___ ___.
16.在 中, , ,那么 的大小为___________.
三、解答题:(本大题共74分,17—21题每题12分,22题14分)
17.已知
(I)求 ;
(II)当k为何实数时,k 与 平行, 平行时它们是同向还是反向?
18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0, ],且| f(x) |<2,求a的取值范围.
19.已知函数 .
(Ⅰ)求函数f (x)的定义域和值域;
(Ⅱ)判断它的奇偶性.
20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1- 且x∈[- , ],求x;
(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m|< )平移后得到函数y=f(x)的图象,
求实数m、n的值.
21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?
22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是
某日水深的数据
t (小时) 0 3 6 9 12 15 18 21 24
y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察: 的曲线可近似看成函数 的图象(A > 0, )
(I)求出函数 的近似表达式;
(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
高一数学测试题—期末试卷参考答案
一、选择题:
1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C
二、填空题:
13、(4,2) 14、 15、 16、
三、解答题:
17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .
②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3),
∴ . 故k= 时, 它们反向平行.
18.解析:
,
解得 .
19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为
且x≠ }
(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)
∴f(x)为偶函数.
(3) 当x≠ 时
因为
所以f(x)的值域为 ≤ ≤2}
20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).
由1+2sin(2x+ )=1- ,得sin(2x+ )=- .
∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,
即x=- .
(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.
由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m|< ,∴m=- ,n=1.
21.解析:在 中, , ,
,由余弦定理得
所以 .
在 中,CD=21,
= .
由正弦定理得
(千米).所以此车距城A有15千米.
22.解析:(1)由已知数据,易知 的周期为T = 12
∴
由已知,振幅
∴
(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)
∴
∴
∴
故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.
导语:数学(mathematics或maths),是研究数量樱拦、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
第一个技巧,看清审题与解题 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a>0”,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。 第二个技巧,利用好快与准 只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的,适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 第三种解题技巧:“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点银颂祥往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。这样的失分情况,的确很冤枉,所以高中学习网不希望我们的同学也犯这样的错误! 第四种解题技巧:难题与容易题的关系 一般来说,当我们拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的.顺序作答。但是,近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间!此外,高中学习方法指导名师建议我们的同学,在解答题时都应设置了层次分明的“台阶”,因为看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
高考数学十二大临场考试技巧 一、调理大脑思绪,提前进入数学情境 考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。 二、“内紧外松”,集中注意,消除焦虑怯场 集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。 三、沉着应战,确保旗开得胜,以利振奋精神 良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。 四、“六先六后”,因人因卷制宜 在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解锋搏题能力的黄金季节了。这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。 1.先易后难。就是先做简单题,再做综合题。应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。 2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措。应想到试题偏难对所有考生也难。通过这种暗示,确保情绪稳定。对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。 3.先同后异,就是说,先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。 4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基础。 5.先点后面,近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。 6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。 五、一“慢”一“快”,相得益彰 有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。 六、确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小22个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 七、讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 八、面对难题,讲究策略,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。 九、以退求进,立足特殊,发散一般 对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。 十、执果索因,逆向思考,正难则反 对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。 十一、回避结论的肯定与否定,解决探索性问题 对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。 十二、应用性问题思路:面—点—线 解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”。如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际。
以上内容是小编精心整理的关于2024正高学典答案数学 正高试题的精彩内容,好的文章需要你的分享,喜欢2024正高学典答案数学 正高试题这篇精彩文章的,请您经常光顾吧!
上一篇:2024企事退休职工养老金还会涨吗? 企业2024年退休
下一篇:更多种植养殖
本文标题:2024正高学典答案数学 正高试题
本文链接:http://m.chayixing.com/article/148728.html
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2024正高学典答案数学 正高试...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2024企事退休职工养老金还会涨...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于河北2024高考日期 河北高考202...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于西安2023棚改 西安2023棚户改...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于巴黎世家2024鞋最新款 巴黎世...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于超能全能生2024第一次联考 超...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2024年哪些属相不好 2024年不...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于国家大数据宣传标语图片 国家...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于五三同步 五三同步版难吗的文...
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于甘肃惠民保险怎么买 甘肃惠民...